Quantum Graphs II: Some spectral properties of quantum and combinatorial graphs
نویسنده
چکیده
The paper deals with some spectral properties of (mostly infinite) quantum and combinatorial graphs. Quantum graphs have been intensively studied lately due to their numerous applications to mesoscopic physics, nanotechnology, optics, and other areas. A Schnol type theorem is proven that allows one to detect that a point λ belongs to the spectrum when a generalized eigenfunction with an subexponential growth integral estimate is available. A theorem on spectral gap opening for “decorated” quantum graphs is established (its analog is known for the combinatorial case). It is also shown that if a periodic combinatorial or quantum graph has a pure point spectrum, it is generated by compactly supported eigenfunctions (“scars”).
منابع مشابه
Some Algebraic and Combinatorial Properties of the Complete $T$-Partite Graphs
In this paper, we characterize the shellable complete $t$-partite graphs. We also show for these types of graphs the concepts vertex decomposable, shellable and sequentially Cohen-Macaulay are equivalent. Furthermore, we give a combinatorial condition for the Cohen-Macaulay complete $t$-partite graphs.
متن کاملCombinatorial Identities from the Spectral Theory of Quantum Graphs
We present a few combinatorial identities which were encountered in our work on the spectral theory of quantum graphs. They establish a new connection between the theory of random matrix ensembles and combinatorics.
متن کاملOn the Spectral Gap for Laplacians on Metric Graphs
This note will describe some of recent developments in the spectral theory of quantum graphs. More precisely, we are going to discuss the spectral gap the distance between two lowest eigenvalues for the Laplace operator on metric graphs in connection to geometric and topological properties of the underlying graphs. Our approach can be generalized further to include Schrödinger operators with no...
متن کاملSpectral Statistics for Quantum Graphs: Periodic Orbits and Combinatorics
We consider the Schrödinger operator on graphs and study the spectral statistics of a unitary operator which represents the quantum evolution, or a quantum map on the graph. This operator is the quantum analogue of the classical evolution operator of the corresponding classical dynamics on the same graph. We derive a trace formula, which expresses the spectral density of the quantum operator in...
متن کاملQuantum Graphs: A model for Quantum Chaos
We study the statistical properties of the scattering matrix associated with generic quantum graphs. The scattering matrix is the quantum analogue of the classical evolution operator on the graph. For the energy-averaged spectral form factor of the scattering matrix we have recently derived an exact combinatorial expression. It is based on a sum over families of periodic orbits which so far cou...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1969